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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 26o8

CHARTS AND AFFROXIMATE FORMUMS F(IRTEE ESTIMATION OF

AEROELASTIC EFFECTS ON THE LOADING OF

mm AND UNSWEFT WINGS

By Franklin W. Diederich and Kenneth A. Foss

suMMARY

Charts and approximate formulas are
aeroelastic effects on the spanwise lift

presented for
distribution>

.

the eatimation of
lift-curve slope,

aerodynamic center> and damping in roll of swept and unswept wings at
subsonic sad supersonic speeds. Two -s of stiffness distributions are
considered, one which consists of a variation of the atiffness with the
fourth power of the chord and one which is based on ~ idealized constant-
stress stmcture. Some desi& considerateions brou@ out by the results
of this paper are discussed.

8
INTRODUCTION

i

A knowledge of the spanwise lift distrfiution and of some of the
aerod-ic parameters associated with it is required for the design of
a wing “structure. Under certain conditions, such as high dymsmic pres-
sures, thin wings, swept wings> or wings designed for low wing loadingsj
the spanwi.seI.&b distribution may be affected to a significant extent
by aeroelastic effects in somewhat the following tinner.

A wing which carries a certain lift necessarily deforms under that
lift. If the angles of attack along the span are changed as a resuit of
this deformation, the lift carried by the wing is changed as well; in
turn, this change in lift causes a change in the deformation of the wing
and hence another change in lift, and so on> until an equilibrium condi-
tion is reached. The changes in the magnitude and the distribution of
the lift are reflected in changes of the wing lift-curve slope, the wing

4 bending and rolling momentsj the spanwise center of pressure of the lift,
andj on a swept wing} the longitudinal center of pressure. Stice the
lift produced by a given change in angle of attack-is proportional to the-,* dynamic pressure$ the vsrious aeroelastic effeets tend to increase with
dynamic pressure. In fact) for certain wings a sufficiently large dynamic
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pressure may ’producea condition of instabi~ity“iriwhich”the change fi
lift caused by deformation is greater ~han the.anw~t of lift required
to produce the deformation, so that a given defor&ation will tend to
increase until the structure fails. This phenomenon is aeroelastic
divergence ~ince it involves only torsional deformations in the case
of unswept wi~s, it is of%en referred to as torsional divergence.

Several methods tie available”foi calc~ati~= these”effects (refer-
ence 1, for instance), but since these effects depend on the structural
characteristics of the wing, which ~e.got .accurat_elyknown in adirance
of its design, the relative~ large amount of time required .$oreveu”the
most efficient of these “methodsmilitates against their use in connection
with preliminary design calculations. A need exists, therefore, for
means of estimating some of the more importaat ae~.elastic effects on
the spsulwise13ft ti”stributionquickly agd tith a. accuracy that is
sufficient for prel~inary design purposes. ::

Charts and approx~ate. formulas are presented’in this paper for .-
estimating the-changes la.s~anwise lift distributi~,n,.lift-cWve sLope,
wing rolkl.ng-momentc“oe.fficient,spanwise center of pressure, and aero-
dynamic Center.occasionedby aeroelastic action of-swept smd unswept
wings at subsonic and supersonic speeds. A160 included are summary
charts which indicate whether the various aeroelas~ic phenomena con-
sidered are likely to affect any given design. By meansof these ch@”s
the.conventional procedure of designing a“~.on the basis of certain
strength criteria, checking it for aeroelastic phenomena, and then rein-
forcing it, when necessary, to meet the stiffness requirements imposed
by these-phenomena can often be simplified.~eatly,” inasmuch as the
effect ol?so&e of these phenomena can be estimated in advance of design.

The use of the charts is described in the section headed “Calculation
of the Various Aeroela8tic.2henomena,”and some considerations involved”
in the selection of the aerodynamic, structural, and geometric parameters
are discussed in some detail in the section headed !Selection of
Parameters.” These two ‘sections,as well as the sections headed
“IllustrativeExample” and “Preliminary Survey of Aeroelastic Behavior,”
are likely to prove of greatest interest at a first reading of this paper.
The various parts of-the section headed “Discussion” are concerned with
the limitations of the charts, with the light-they shed on such practical
design problems as the relative significance.of strength and gtiffness as
design criteria, wtth efficient ways”of stiffening a wing tha~ is strong
but not stiff enough, and with the achievement of a~oisoclinic conditions.
A brief deiicriptionof-the calculations (based on references 1 and 2) used
in preparingtbe charts is contained in the appendixes.

.-

—
.-H

J-

+“-.
---

. . z-*-
—

.-
.—..-

.

,.. -..:..-—.

..-
--*.

.-

“. , ..
!:=-

. ..—. .—.
—.-r
t “-

.
-.

. ..-

.

.

. .

-.
-==
..:.
#

w. . .



NACA TN 2608 3
,

sYmoIs

aspect ratio (b2/S)A

swept-span aspect.ratio (A/cos2 A)‘A

E cross-sectional area of the (assumed) single torsion cell,
square inches

distance from leading edge to section aerodynamic center,
fraction of chord

a

distance from lead@g edge of mea?aer.odynamic chord to
wing aerodynamic center, fraction of mean aerodynamic .,
chord

b wing span, inches

b’ wing span less width of fuselage, inches (b -W)

wing-root bending-moment coefficient (4Mr/@$CB

c% li$)coefficient of wings alone, exclusive of fuselage
LJ@

wing lift-curve slope, per radian

clW rolling-moment coefficient on both wings alone, exclusive
of fuselage (Rolling moment/qSb)

wing-root twisting-moment coefficient (=r/qscr)CT

c chord (measured perpendicular to elastic.axis), inches

()Cr + Ct
chord, inches —

2

lift-curve slope, per radian

average

sectioncZa

mean aerodynmnic chord (parallel to plane of symmetry),
inches

Young’s modulus of elasticity, pounds per square inch

CMAC

E
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distance from leading edge to elastic axis, fraction of
chord —

dimensionless momerrtarm of the section lift about the
elastic axis (e -a)

effective or average dimensionlessmoment arm

allowable bending stress, pounds pe’rsquare inch

root-itiffness function

allowable-shearstress, pounds per square inch

structural tiight function ..

dimerigionlesk&ameters used iria~roximate formulas for
angle of attack due to aeroelastic deformation

dimensionless functions of the distance along the span
used in approximate formulas for angle of attack due to
aeroelastic deformation

modulus of-rigidity, pounds per square inch

wing thickness, inches

section bending moment of inertia, inches”4

section moment of inertia in torsion, inches4

dimensionless p~ameters used in approximate formulas for
dimensionless dynamic pressures at divergence

dimensionless sweep parameter
(

‘t (“)r t~ *
~ -~

)

lift of both wings alone, exclusive of fuselage, pounds

lift per unit distance along

bending moment about an axis
inch-pounds

free-stream Mach number
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perpendicular to elastic axis, $
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Y n design load factor

d P rolling angular velocity, radians per second

*
q dynEmic pressure, pounds per squsre foot

q* dimensionless

c dimensionless

(dynamic pressure &

(dynamic pressure ~-,1.1,
\L44

s total wing area, square tnches

s distance along elastic axis measured

S* dimensionlesssdistance along elastic

)C%e1cr2st2 cos A

(w)r

C%=3 s~ *

(EI)r )

from wing root, inches

axis (s~st)

E distance from root to center of pressure of lift along
elastic axis, inches

E* dimensionless distsnce from root to center of pressure of
lift (E/st)

.-
T accumulated torque about

. t thickness of most highly

elastic axis, inch-pounds

stressed element of skin, inches

t= thickness of equivalent skin which includes the material
in strbgers and spar flanges, inches

ti distributed torque due to inertia loading, inch-pounds
per inch

v free-stream velocity, feet per second

w design gross weight of airplane, pounds

Ws ‘“ weight of prs structure of both wings, pounds .

Ww weight OY both wings exclusive of fuselage, pounds

< w width of fuselage, inches

4 Ws weight of primary load-cs2rying structure per unit distance
dOIlg Span, pounds ~ inch
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lateral coordinate, incbesY

P+

F

a

—.
A()dimensionless lateral coordinate ~

b/2

lateral d~stance to center of pressure

angle of attack in a plane parallel to plane of symmetq,
radians .— ~. —.==

r angle of local dihedral, “radians,or spanwise slope of
normal displacement of elastic axis

density of the material of the primary structure (or an
equivalent density in the case of sandwich construction), “-

78

pounds per cubic inch

()
lateral distance measured from wing root, inches y - ~

-

()dimensionless lateral distance L
b’/2

. ~.

-.factors defined in tS.ble1 —

for

—
n
-.ratio of lifi-curve slopes- (C<J<)

angle of sweepback at elastic axis

wing taper ratio (’t/%)

free-air density, slugs per cubic foot

angle of structural twist in planes ‘perpendicularto
elastic axis, radians

tip stiffness ‘ratio ((EI)t/(EI)tc8)u)

dimensionless parameters used in approximate formulas
lift, root bending moment, and root twisting moment

Subscripts:

Cs

D

e

constant-stress

. “i–
at divergence

effective

— ..
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Superscripts:

M

T

r

v

7

geometric (dmto airplane attitude or built-in twist)

inertia

rigid wing (for q = O)

at wing root

structural (due to structural or aeroelastic deformation)

at wing tip

due to bending moment

due to torque

due to root bending

due to root twist

-“

.“

USE OF THE CHARTS AltoAPFROXIMA’lIEFORMULAS

Summary of Method and Scope of Calculations on Which Charts

and Approximate Formulas Are Based

Although a detailed understanding of the method ad scope of the
calculations on which the charts of this paper are based is not essential
to the use of the charts, a brief account of these matters is given,
primarily to aid in the appreciation of the limitations of the charts.
The method is described more fully in appendix A.

Most of the calculations on which the ch&ts are based were made
by the method of reference 1, which consists in solving the differential
equations descriptive of an elastically deformed wing under aerodynamic
loading by numerical methods employing matrix techniques. Treated by
this method were wings with four taper ratios X (1.0, 0.5, 0.2, and O),
two ty_pesof stiffness distributions (one proportional to the fourth
power of the chord and one dictated by constant-stress considerations),

a and four values of a sweep parameter k, at several values of the

dynsmic-pressure ratio ~ Calctiated for each case Were t~ _ic

●

pressure at divergence and the chsmges in spanwise lift distribution,
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total wing lift, root bending
of pressure of the lift. For

. “.
NACA TN 2608

c.x
moment, rolling moment, and spanwise center -,.
the wings of constant chord.and constant

...
atiffneSS, calctia-tions“were iho performed for sG values of kbya
method-which is an extension of that of reference 2 and consists in
solving the differential equations exactly for these relatively simple
caseO.

Two important approx@at iOLIEthat have been gade in all calculations
are:

(1) Aerodynamic induction effect6 at subso@q_speeds are taken into
account by an over-all reduction “ofthe strip-thee@ loading and, in the
matrix calculations, by rounding off the strip-theory loading at-the tip
{see references 1 and 2); at supersonic speeds etrip theory is used, with
a small reduction at “thetip for the matrix calculations.

(2) The rigid-body rotations imparted toa swE@ wingby its trian-
gular root portion are taken into account by a suitablechoice of an ~
effective root. ..

These assumptions were made not so much to sin@i&_the problem a~
to make the results more generally “tipplictibie.

. -—
T&-most severe limita-

tion on.the use of-the ch&rts is probably imposed by the fact that
calculations have been made”for only two types of s~anwi.sedistributions
of bending and torsional.stiffnesses:

(1) Stiffness ”distributionswhich v&y ~; the fourth power of the
chord, such as those of solid wings , —. .-

(2) Stiffness distributions associated with”stmctures designed for
a constaat level of combined bending and torsion stress at every point
on the span, as described in appendix B -.

Except for solid “wingsand those with geometrically similar cross
sections, for which the stiffnesses vaxy as the fourth power of the chord,
the stiffness distributions of aqy’gi.venwing depend on the detailed
designof the wimg and cannot be generalized easily. Consequently, the”
constant-stress concept outlined in appendix B has .@en used to estimate
stiffness distributions for some of the calculations; it constitutes an
effort to relate the stiffness of a wing to its strength on the basis of
the following assumptions: —.

(1) The combined bending andtor:d.o~l stresse~~e~mstant along
the span.

(2) The structu-is designed for cambined bending and torsional
stresses.in such a manner tluybthe suq of the ratio of the actual to the
allowable bending stress and the ratio of the actual to the allowable
torsion stress is equal to unity when the margin of safety is zero.

. .
.

..-

—:_-=
.—

--
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(3) The structure is of the thin-skin, stringer-reinforced shell
type and its main features do not vary along the span; for instance, the
number of spars and their chordwise locations are constant along the span.

(4) At the design condition the spanwise distribution of the applied
loading is proportional to the chord.

Although root rotations of swept wings have not been taken into
account explicitly in the calculations because they vsry smong different
designs in a largely unpredictable manner, means for t- these rota-
tions into account approxtiately are discussed in a subsequent section.

Selection of Parameters

Geometric parameters.- The geometric parameters used in the analysis
are defined in figure 1. The location of the effective root indicated
in figure l-is discussed tithe section concerned with the structural
parameters. ●

Aerodynamic parameters.- The aeromc par=ters whi~ enter the
analysis are the wing lift-curve slope and the location of the aerodynamic
center. Two 13ft-curve slopes are used at subsonic speeds: The wing

lift-curve slope C& is used only in cor@mctionwith additional lif%
.-* distributions; for all other lift distribution, that is, those due to

built-in twist, due to roll, or due to aeroelastic twist, an effective

u lift-curve slope C% is used. Approximate values of these parameters

are given for subcrit!?calspeeds by the relations

A COS A
c% = cZa cZa

A+2— cos A
2fl

A COS A
C%e ‘ cZa cZa

A+4FCOSA

(1)

(2)

to the
.5

v“

perpendicularwhere Cz is the lift-curve slope of the section
a

quarter-chord line at a Mach number equal to ~ cos A. An approximate
value-is givenby
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““=&
Equation (1) is given in reference 3 tid shown
incompressible and to subcritical compressible

.-
NACA TN 26&

—
(3)

to”be applicable both to
flow, Eq&tion (2) is

given in references 1 and 2 but ‘withoutthe term CZ 2YC in the denomi-d
nator. This term is introduced into equation (2) in order to extend its
applicability to compressible flows in the same manner as that employed
for the coefficient”of damping in roll @ reference 3.

At supersonic speeds both lift-curve slopes
to the ef~ective section lift-curve slope

4 COSA

. “ae = ml

sxe approxfma+ely equal

(4)

me ratio of the lift-curve slopes CT. and CT -is defined by

%

(5)

so that for supersonic speeds R is equal to 1. 1

The local ”aerod@amic”centers are assumed to be at a constant
fraction of the chord from the leading edge, so that their distances
from the leading edge (as fractions of the local chords) are all equal
to the distance of the wing aerodynamic center from the leading edge of

., —
.——

c ‘“-.

*.

..-
.—=

.--~
.—

..
,.r——

.--L

.

.-.=

..- —

-. *

—
-- .—-..-

-a:

the mean aerodyn.adc chord-(as a ‘&action of the mean aerodynamic chord).
—

The moment arm el is then givenby the relation .-

(6)

The lift-cumve slopes and the locations,ofithe aerodynamic center
vary with the free-stream Mach number; hence the appropriate values must __ ...=.
be used at each.flight condition for which aeroelastic c~lcfiations are.
made. For airp~nes designed to operate at subsonic speeds, only the
higheqt Mach nuniberattainable at the highest dynamic’pressureis like4--
to be critical from aeroelastic considerations. For airplanes designed

-f?,

to operate at supersonic-speeds no such general state&ent can be made;
-=

however, at a given altitude either the region of Mach numbers near the i

I
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d transition from the stisonic to the transonic regime or the highest
attainable Mach numiberis likely to be critical as far as the aeroelastic

. phenomena considered in this paper are concerged. (See figure 4 of
reference 1 and figure 5 of reference 2, for instance.)

The airspeeds at which the various aeroelastic phenome~ are of
interest enter the calculations in the fo~ of the corresponding dynamic
pressures. These dynsmic pressures, in turn, are expressed in dimension-
less form as

c~elcr2st2c0s A
q*’&

(GJ)r

or

~ C~ecrst3sin A
~=—

144 (EI)r

(7)

(8]

The psmmeter q* is useful in the analysis of unswept wings, for which
torsional deformations are predominant; the psrameter F is useful for
highly swept”

. general, the
The ratio of

w

1

wings, for which bending deformations are predominant. In
parameter q* is used in this paper unless el is zero.
these parameters

k.~. >(GJ)r‘lcr~t-A” . (9)

is independent of the dynamic pressure and depends only on geometric and
structural parameters. .Thisratio is very useful for analyzing the
aeroelastic behavior of swept wings.

Structural psrsneters.- For the purposes of an aeroelastic analysis,
the wing structure is characterized-by the location of the elastic axis
and the magnitude and distribution of “thebending and torsional stiffnesses
(EI and GJ), as well as by the magnitude .ofthe rigid-body rotations
Impsrted to the wing by its root.

The elastic axis is usually defined as the locus of points at which

4 normal loads-can be applied without causing the wings to twist. Such a
locus does not generally exist for practical ~sj however, for unswept
wings withput cut-outs an axis can be determined which approximately

* satisfies this condition. Similarly, for swept wings tithout cut-outs
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an elastic axis can.be defined for the outbo~d pm of the wing if the ~
is considered to be-clamped along some such line as the effecti.w root
shown in figure 1. In tiostaeroelastic calculations the locus of shear
centers for both swept and unswept-wings is assumed to be the elastic
axis. If the structuzw has large cut-outs w~ch ~sult in sudden changes
in the stiffnesses and in the shear center along tQe span, the charts of
this paper cannot be used except in a qualitative sense.

The magnitude and the spanwise distributions of the bending and ‘
torsional stiffnesses enter aeroelastic calculations by means of the
charts and approximate formulas in different yays. The magnitudes, as
characterized by the values of the stiffnesses at the effective root,
have to be known in order to perform any calculations; the distributions
are implicit in the charts. The root stiffnesses, if not known other-
wise, can be estimated either from,e.xperiencewith similar designs, from
the results of the constant-stress concept outlined in apndix B, or
from s combination of the two.

.—

.-

. .

b

+

..

. .

. --

The required bending stiffnessat-the root (EI)r is proportional

to the design load factor, the wing l-oading,the wi~ thickness ratio, the
fourth power of the root chord, the square of the syept-span aspect ratio
(A/cos2A), and the ratio of the &odulus of elasticityto the allowable
bending stress, amd depends on the taper ratio and on the detailed design
of-the wing (see appendix B). ~means of-this rel.atlonthe bending
stiffness of one wing can be estimated from that of a reasonably similar
wing. Or, with the constants of proportionality q~ and Fw given in

table 1 and appendix B, respectively, which take into account some of
the detailed design parameters as well as the taper ratio, the stiffness
cam be estimated directly. However, in view of the fact that these
constants have.been derived on the basis of a highly idealized structure
and loading condition they must be used with caution. The ratio of the
root bending stiffness to the root torsional stiffness can be estimated
by mearlsof equations given in appendix B or, preferably, from experience
with structures similar to that under consideration.

The spanwise stiffness distributions need not be known in detail in
order to use the chsrts and approximate formulas. If the wing is solid
or nearly solid, or if its cross sections are geometrically similar at
all points, the charts for stiffness distributions proportional to the
fourth power of the chord are used. If the wing doe; not have large
cut-outs and is designed for a constant stress level, the charts for the
stiffness distributions associated with constant stress are used. The
use of these charts tends to overestimate aeroelastic effects to some
extent because, although actual wings are designed for constant stress
over most of the span, the portions near their tips are designed on the
basis of other considerations, such as handling loads or minimum standard

“-

“w

.-

—.

&_

“:

.
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sheet thicknesses; therefore, wings tend to be stiffer near the tip than
they would be if designed on the basis of constant stress throughout.
This difference in stiffness is particularly large if the taper ratio
is zero.

If the wing corrtainsl=ge cut-outs or if, for any other reason,
thewing stiffness distribution is known to be substantially different
from a constant-stress type, the charts canbe used to furtish semi-
qualitatim results for the various aeroelastic phenomena by using
fictitious stiffnesses, provided the actual stiffness distribution is
known at least approximately. The root stiffnesses of these fictitious
distributions may be assumed to be the ones that give rise to twist or
bending angles at the tip which are the same as those of the actual wing
if the bending moments or torques vary as the square of the distance from
the tip. For convenience, the spanwise distribution of these fictitious
stiffnesses-may then be assumed to be proportional to the fourth power
of the chord. On the basis of these assumptions,

J11&=3~ o
# - s*)2ds* “ (lo)

where the subscript e refers to the fictitious stiffness, and
where the integral re resents the moment of &“tiia of the area

-- under the function ? plotted against s* about the point # = 1.
H

The fictitious torsional stiffiess at the root canhe obtained in the.
same manner. The aeroelastic phenomena can then be esttiated by use of
these fictitious root stiffnesses and the charts for stiffness distribu-
tions proportional to the fourth power of the chord.

In the derivation of the charts the wing is considered to be clamped
at the effective root perpendicular to the elastic q,xis. From the data
and analyses presented in references 1, 2, 4, and 5 a satisfactory loca-
tion of the effective root appesrs to be at the intersection of the
elastic axis and the side of the fuselage.

If the rotations at this effective root sre known as a result of
deflection tests or a detailed analysis such as that of reference 5, the
root twist due to torque W the root bending
be taken into accourctby moving the effective

due to bending moment ~ “
root inboard by the distance

(n)
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-. .-

(12)

CPT is the angle of twist at the root due to a root torque T=,where r
M is the deflection slope at the effective root due to aand where ~r

bending.moment ~. Since the distances As~ amd Asr may differ from
each other, some cmnpromise between the two must be mdej for unswept

wings the use of AB~ appears to be Indicated, whereas for highly swept

wings the use ofl Asr is mare appropriate.

Preliminary Survey of Aeroelastic Behavior

The information contained in some of”the subsequent sections hs
been summarized in.figure 2 for the p~ose o&asc&rtaining in advance of
more detailed estimates, if desired, whether the aeroelastic phenomena
considered herein are likely to affect the desi~ of the wing struct~e.
This preliminary survey is not essential to any of the further calcula-
tions but may show them to be unnecessary in some cases.

The charts of figures 2(a] to 2(d) pertain to wings of’taper ratios
O, 0.2, 0.5, and 1.0 “&xlconstitute plots of.the dynamic-pressurepars.m-
eter q* defin6d by equation (7) against the sweep parameter k defined
by equation (9). These parameters contain the root stiffnesses (GJ)r

and (EI)r; if,-whe.na~reliminary survey of aeroelastic effects is to

be made, no information whatever concerning the wing stiffness is avail-
able, the following relations for q* and k may be used:

.fl*=- $~ ,- (13)

k_l+kG ‘A_— .—
2 E qlge~

where Fr is a root-stiffness parameter
plotted in figure 3, and where. qa and

defined in appendix B and
M are defined by

-.

w—-
.—

-u
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(15a)

(15b)

in terms of some of the factors defined in table 1.

FQure 2(e) pertains to wings for which the moment arm el is zero

and, hence, k is -infinite;with t~ de~ee of approximation involved
in the use of figures 2(a) to 2(d), figure 2(e) canbe used for wings
with lkl>25. This figure consists in a plot of the dynamic-pressure
parameter Q, defined by equation (8), against the taper ratio k. If
no information is available concerning the root bending stiffness (EI)r
comtained in 3; the follo~ relation may be used: ‘

(16)

The various lines of the charts of figure 2 designate the conditions
at which a wing designed on the basis of strength considerations alone
is likely to encounter divergence or ‘spanwiseshifts of the center of
pressure by various smounts; positive shifts are those toward the tip.
These spa.nwiseshifts furnish an estimate of the Increase in root bending
moment due to aeroelastic action and an estimate of the shift in wing
aerodynamic center, since

(17)

Inasmuch as the parameters q* and @ contain the dynsmic pressure,
the negative values of q* shown in figure 2 may requtie some explana-
tion. The four quadrants of each of the charts of figures 2(a) to 2(d)
may be characterized for practical ~oses as follows:
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Quadrant Sweep
‘1

Divergence Shift in ~

1 Back Positive Impossible beyond Inboard beyond a
a certain sweep- certain sweep.-

2. Forward Positive Likely Outboard

3 Back Negative” Impossible ~ Inboard ““

4 Forward Negative Possible beyond a“ Outboard beyond a
certain sweep certain sweep

\
For unswept wi@s k is approximately equal to zero, and the aero-

elastic phenomena referred”to in the cha&ts of fi~ 2 ere similar to
those o~swept wings defined by points in quadrant 2 ifi q* is positive
and by points in quadrant 3 if “q* is negative. In other words, the
aeroelastic phenomena “ofunswept wings are’similartm those of swept-.
forward wings if el” is positive and to those of sweptback wings if el

is negative. The aerodynamic-center shift associated with the ~hift in
the lateral center of pressure ~ ‘or in the spanwi.secenter of pres-
sure E is alw~”G forward, except for small posftim values of k
(associatedwith sweep amgles smaller than a,certain value), in both
quadrants 1 and 4.

.

The significance of negative values of q* is that el is negative,
rather than that q is negative. A negative value of el may be obtained

at supersonic speeds, but under most conditio& el is M.kely to be posl-

tIve. Similarly, a negativ= value of Y @lies that A is negative
(that is, that the wing is swept forwsrd).

In using figures 2(a) to,2(d), estimates must be made of either the
root sti.ffnesses(in conjunction with equations (7) and (9)) or of the
effective~ss factors ~a =d ~b (for use in equations (13) and (14)).
The factor Fr is obtained from figure 3 for the l–~gest-value of el
likely to be encountered at the design lo&d factor And for the given
taper ratio A. The parameter q* is calculated for the combination oZ.
dynamic pressure q, lift-curve slope c~e, and timeti arm el which

is likely to be critical from an aeroel~stic point‘&view. For an
unswe~- wing the combination for which the product %& Is a maximum

is likely to be critical;“for a swept wing the

‘%
is a maxhmm is likely to be critical.

calculated for the seaievalue of el. ‘

conibinationfor which
The parameter k is then

.—
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The values of q* and k define a point on one of the charts of
figures 2(a) to 2(d) (whichever is closest to the actual taper ratio).
If the shift in spanwise ceder of pressure (and any associated shift

.in the aerodynamic center) at that point is small and, in the case of an
unswept or a sweptforward wing, if the absolute value of the ratio of
the value of q* at that point to the value of q* at divergence for
the value of k at that point is small, the static aeroelastic phenomena
discussed inthls paper probably need not be taken into account in
designing the wing structure. On the other hand, if the point on the
chart indicates the likelihood of significant aeroelastic effects on the
spanwise center of pressure or the ~ssibility of an approach to the ‘
divergence condition, further calculations are desirable. The charts
of this paper may be used for the prelimi.?? calculations; once the
structure has been designed, more refined methods such as that of refer-
ence 1 msy be used.

If the moment arm el is so small or the angle of sweep so large
that the parsmeter k exceeds the range coveredby figures 2(a) to 2(d),
the chart of figure 2(e) maybe used for the purpose of a preliminary
aeroelastic appraisal of the given w@j. ~n this figure only the parsm-
eter Zj is required, since k is considered to be infinite. The
parameter ~ canbe obtained from equation (16). The analysis then
proceeds in the same manner as for figures 2(a) to 2(d).

Calculation of the Various Aeroelastic Phenomena

Dynsmic pressure at divergence.- The solutions for the divergence
speed obtained by the direct method in reference 2 and those obtained by
the numerical matrix method given in appendix A canbe summarized by
approximate formulas which give the dimensionless parameters q*D and %

(the values of the parameters defined in equations (7) and (8) that
correspond to the value of the dynamic pressure q at divergence) in
terms of their ratio k definedby equation (9).

These approximate formulas are

A

D

‘1
q*D = —

l-~k

smd

(18)

(19)
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When the angle of sweep is zero, equation (18) reduces to q*9 = Kl,

and when the moment arm el is zero, as it may be in supersonic flow,
,T -.

equation (19) reduces to ‘Theconstants K1 and ~ axe~=..~. ,

given in table 2 for wings wit.l”taperratios o% 0, 0.2, 0.5, and 1.0,
for both types of stiffness distributions; the parameter q*D for
unswept wings and the parameter ~ for swept wings with e= = O are

plotted in figures k(a) and h(b), respectively, against the taper ratio

,

h. .“_

With the values”Of q*D ‘r ~D givenby eq~tions (18) and (19)
and the definitions of these two parameters given by equations (7)”
and (8), the values of q
desired, the corresponding

required for.divergence may be determined. If “-
airspeed ~“ be determined from the relation .,1

. . —

. . .

The value of ~ is often negative for swe@back w@gs, and since

a negative dynamic pres~ does not correspond to any real speed; these
wings cannot diverge. These ~gative ~lues of ~~ nonetheless, are

useful as reference values in other aeroelastic phenomena.
.-

.
The values of the constants % and ~ given in reference 2 differ

~:

somewhat tiom the correspondix values resulting from the matrix solution
in appendix A. The matrix results are probably more”significantbecause .-_”
they are based upon more realistic aerodynamic astiptions; the K1 and

K2 values in refemsnce 2 tend to give conservative results. —.

The value of qD calculated for g given value of q*D or ‘~

depends on the value of the effective lift-curve slope Cke ‘r c& ‘ ‘;-. —
and, hence, on the Mach number.- As suggestealin references 1 and 2, the . ~“.._
value of qD calculated at various Mch ‘ntier-s“frybe plotted against
Mach number. I&lines of the actual dynamSc pressure at several altitudes
as a function of Mach number are drawn on the same plot, an ifiersection
of the divergence line with one of the lines of actual dynamic pressuz%
designates possible-d.iyergenceat that value of dynamic pressure, Mach
number, and altitude. If this plot is on log-log coordinates, the lines
of actual dynamic pressure are straight and the ratio of the dymc
pressure at divergence to the actual dynamic pressure at a given Mach
number and altitude can be scaled off directly. (See references 1 and

m



NACA TN 2608 , lg

spanwise angle-of-attack distribution.- In appendix A, an approxi-
mate expression is determined for the change in angle of attack due to
wing flexibility. For the additional-type angle-of-attack distribution

(ag is constant) the angle of”attack due to structural deformation as

is given by

as—= +&5 +V%)a%
qD

(20)

The functions fl and Ml, which depend on the spanwise coor-

dinate S*, and the function Fl} which depends on the parameter k,

are given in figuree5 for swept wings with tayer ratios of 0.2, 0.5,
and l.O and with the two different types of stifftiss distributions.
For wings with zero taper ratio the structur~ defomnation cannot be
obtained from equation (20), as is pointed out in ap~ndix A. However,

a
the ratio & as a function of the spanwise coordinate S* is shown

in figure 6 f~r the two different “stiffnessdistributions, several values

‘f q/qD~ and several values of the parameter k.

The spanwise distribution of a.= due to a linear twist , ag = S*( %) ‘
.. which may be either symmetric

.
as—=
a.
%

or antisymmetric, is

dq
D f2+F2&i?2

1- 9 ( )

%

where the functions f2, Af2, and F2 are given

approximately

(21)

in figure 7 for wingI3

of taper ratios ‘0.2,0.5, and 1.0. The angle-of-attack ratio is shown
in figure 8 as a function of s*, q/qD, and k for wings of zero taper
ratio.

The results of equations (20) and (21) m~ be superimposed. For
example, if the spanwise distribution of as due to rolling is to be
found, these equations must be added in such proportion that
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so that

( b’ b’
a )

&
g= I- T+ TEI*N (22)

where pb/2V is the angle -ofattack at the tip d& to roll. The -
distribution of as due to roll is then

[( )(
..

a q/qD 21 b’
g=l-%K )(

+b’-Y fl+F1~l

1

~f2+F2Af2 (23)

2V %

E@nwise lift distribtiions.- If desired, the lif% distributions
can be obtained for the angle-of-attack distributions given in the
precedtng section by one of the commonly used methods of calculating
spanwise lift distributions, such as that of reference 6. However, the
following method is simpler.

Within the framework of the assumptions made in the analysis the
lift per inch of span is proportional to the local angle of attack, so
that

.—

.—

—.—

c

-—.

.—

-—

(24a)

..
for geo=trical angles of attack which are constant along the span, and

.

2 ‘% ‘%—=l+— —
lo aga% ( 24b)

as
for geometrical angles of attack due to linear twist, where H— and

aE

/as a%. are obtained as indicated in the preceding section. If–no better

appro~imation is available for the rigid-wing (q = O) loading Zo, it
msy be estimated from the relation

10 * Chcqag (25a)

for geometric angles of attack which are constant along the span, and
from

‘o wc~c’ag (25b)

for all,other geomtric angles of attack.

.—

.—.—

—

——.

,.

4

—
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Lift and moment coefficients.-
‘e ‘iwlimcufficient %’ ‘he

wing-root bending-moment coefficient CB) and the wing-root twisting:
moment coefficient CT msy be obtained in terms of their respective
rigid-wing values by means of the following approximate expressions:

c%1-%(1-’) (26)
~= 1-*

1+(1-IQ)
CB _—-
CBO

1- 9
%0

l%1- 1- T~)
CT _ D—_
CTO

1- 9-
%

(27)

(28)

where the coefficients v, I-L,and T” depend on the type of loading.
The subscript 1 is used for additional-type angle-of-attack distributions
and the subscri~ 2 for l,inear-twist-type angle-of-attack distributions.
The coefficlents v~9 VI> and ‘1 are given in figure 9 as functions

of the parameter k for _wi~s of taper ratios 0.2, 0.5, and 1.0. The
ratios of the lift, bending-moment, and twisting-moment coefficients to
their respective rigid-wing values are given in figure 10 as a function
‘f q/qD for several values of the parameter k when the taper ratio

is zero: The values of V23 I@ and T2 are given in figure 11 for

wings of taper ratios O.2S 0.5, and 1.0, and ratios of the ,lift,bending-
moment, and twisting-moment coefficients are given in fi$ure 12 for wings
of zero taper ratio. The additional-twist and linear-twist resuits of
equations (26) to (28) may be superimposed h. the same way as those of
equations (20) and (21).

The wing rolling-moment coefficient clW is defined as the rolling

moment of the loads on both wings about the fuselage cetier line divided
by qSb. Therefore,
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The angle-o~=attack distribution due to rolliw given in equation (22) <
must be used in finding the values o.f Mr2 Tr> and ~ in equation (29).

Spanwise centers of pressure and aerodynamic center.- The spanwise
0

location of the center of pressure is givenby the distance

or the dimensionless

(Inasmuch as TI* is

b CB5=-—
2C

J-w
(30) ‘:_

distance

%g*.—

c% (3U . . . .

equal to s* by virtue of the definitions of those
dimensionless quantiti~s (see also fig. 1), equation (31) c% be corL-
sidered to be an expression for 5*

—
rather than E*, if desired.) With

the values of the bending-moment and lift coefficients give~in the
preceding section, the ratio of % to its value for the r~gid wing may
be calculated from either of the equations

l-~1-llv)
a
r=
sol- -& - v)

and

AJ&@ -1)
h- ==-

45‘o 1- l-v)

1 ..
(32) ‘

where pl and VI are used for constant””geometricalangles”of attack ‘--—

and V2 aad v2, for linearly varying geometrical_angles,of attack.

The shift due to aeroelastic action of the longitudinal wsition of
the center of pressure associated with a given shift of the spanwise
center of pressure, &-=E- EO, is equal to sin A&-. The shift in

aerody~ic center (positive when rearward, or stabilizing) can con-
sequently be calculated by substituting into equation (17) the values 4:
of &- obtained from equation (32) with values of ‘lAl and V1. ...-

—

.

. .-—
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Inertia effects.- No charts are presented’in this paper for the
effects of inertia on quasi-static aeroelastic phenomena, that is, aero-
elastic phenomena associated with flight at constant acceleration; the
manner in which mass is distributed varies so widely among different
wings that preparation of.a generally applicable set of charts for inertia
effects appears to Fe iqn-actical,at present. Furthermore, except for
flying wings, the wing deformations due to inertia loads are small com-
pared with those due.toaerodynsmlc loads, the two types of loads being
in about the same ratio as the wing weight to the weight of the entire
airplane. If desired, however, inertia effects and the aeroelastic
increment in these effects can be calculated in the manner described in
the following paragraphs.

From the known or estimated mass distribution’of the wing the
inertia load Zi ~ inch of sp~_and the @e@ia torque ti per inch

of span can be calculated for aby given normal, pitching, or rolling
acceleration. Substitution of these loads and torques for the ternis Z
and Zelc in equations (A3) or (A36) and equations (A2) or (A35),
respectively, yields the ‘&lues-of the accunidated bending moment and
torque due to the distributed inertia loads and torques. In turn, sub-
stitution of these accumulated bending momehts and torques in equa-
tions (Ah), (A5), and (A6), or in equations (A37) and (A38) and the
matrix equivalent of equation (A6), yields the”angle-of-attack distribu-
tion due to the defo~tions caused by the inertia effects associated “ “
with the given acceleration.

This angle-of-attack distribution cube considered as a geometrical
angle-of-attack.distribution. Fog the purpose of ‘calculatingthe incre- .
ment caused by aeroelastic action, this distribution can be approximated -
by a linear-twist augle-of-attack distribution with a value at the wing
tip which is such that the moment about the effective wing root of the
area under the linear-twist distribution equals the moment of the area
under the calculated angle-of-attack distribution due to inertia effects.
(The moment, rather than the area, is suggested as abasis of correlation
because the angles of attack near the wing tip are more important in
aeroelastic phenomena than those at the wing root.) The Justification
for this rather arbitrary appromtion to the angle-of-attack distribu-
tion is as follows: As previously mentioned, the wing deformations due
to inertia loads are likely to be small compared with those due to aero-
dynamic loads; furthermore, the correction to be applied to these defor~-
tions as s result of aeroelastic action is usually small compared with
these deformation .snd,hencej “isvery small in comparison with the total ‘
wing load, so that the correction need not be calculated as accurately
as the correction.for aeroelastic effects to the ~igid-wing lift
distribution.

!C’heangle of attack due to structural deformation as associated with

the linear-twist distribution can thenbe obtained from equation (21) and
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figure 7 or} if L = 0, from figure 8.- The “liftdistribution associated”
with the total angle-of%ttack distribution due to.the deformations caused
by the inertia effects, including the increment “inthis angle-of-attack
distribution produced by aeroelastic action, can then be found from equa-
tion (2kb), in which C& agt, and 20 pertain to the calculated angle-

of-attack distribution due to-the inertia effects.<not the linear approxi-
mation to this distribution). This lift distribution can be integrated
to obtain the lift, bending moment; rolli~”momenty ti aerodynamic-center
position dm.tg inetiia effects, as modified by aeroelastic action.

*-. .

The lift and rolling moment calculated “inth~~ mann6r may thenb;”
-r

combined with the lift and rolling moment for.ste.gdylevel or rolling
–...-

flight calculated by the method outlined in.the preceding sections. For ““ ““ ,:
instance, if the contributions Qf the tail and the fuselage to the air- - .-
plane lift can be.ne”glectedjthe wing l“iftcan be—mitten as.

.-
.—

ww)=~c ()%II(W -
lhk %Saqs + = Sn

.,_-—...

()3$ k

where
X8

is--thetotal normal f@%e ;per’:ixa~t-~oadfactor due to ir@rtia. “~.’ -- ,.- .. ------,.=

effect-a,including aeroelas-ticeffects; it--is’”-e”qu~”to ‘-WW-”-plw the”lift ..–,=
..—.=._

.—
on both wings due-to inertia effects, as-mdified-%y aeroelastic action, .= ._–.:.

per unit load factor..and.is almost alwaw negti-t~ve.In--theprecedi~ ““” -—‘
equation C% is a wing M_fkcurve ~lope which i+cludes s.tatic”aero-,

!

.:E

elastic effec s and is equal to C~ multiplied by the fmtor on the right ““”,=
side of mqustion (26). Then .. . .., --—

c%,iaqs
=“&”w_ww .-

--.——
---’ :~

. .

where ..-- .:,.. . . — ““= :. .“--— .—

Cks’i=$wc’as- “::.
is a wing lifti-curveslope which includes static aSoela.@.iceffects, ___
inertia effects, and aeroelastic modification of the inertia effects.
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k Illustrative Example

The parameters of -a swept wing, which differs from the wing of the
illustrative example of reference 1 only in the width of the fuselage to
which it is attached, are given in table 3. The values of AE@ and

Asr were calculated from the dimensionless root-rotation constants used
in the example.of reference 1>

%
=oandQ rM = -0.25, by means of

the relations

@’ . %%we
A# =QTMWe

where we, as defined in reference 1, is the distance along the span

between the effective root and the innermost complete section of the
torsion box perpendicular to the elastic axis. In the wing of the
illustrative examples of the prese~t paper and of reference 1, we is

22.4 inches. These relations for As~ and A# can be obtained from
equations (11) and (12) of the present paper in conjunction with the
definitions of the root-rotation constants given in equations (15a)
and (15d) o-frefere-nce1; in the notation of the present paper the

. definitions are:.

/T Tr
*

% = :(GJ)r

~M
r /%

‘rM ‘we/(EI)r.

The stiffness is assumed to vary as the fourth power of the chord in
the example of the present paper. -

The subsonic and supersonic values of the parameter k were
calculated from equation (9). By means of appropriate values of the
constants K1 and K2 taken frorntable”3, the values of q*D were

calculated from equation (18) and included in table 3. From these values
of q*n, the subsonic and supersonic dynamic pressures at divergence were.
found ~hrough the use of equation (7) and are given in table 3. These
values of qD vary as the reciprocal of the effective lift-curve slope,

. the corresponding values of el being assumed to remain constant.
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In order to find the angle-of-attack distribution for additional-
i

type loadings from eguat.ion.,(20).,the values of F.l and of the func-
—
.-

t ions ‘1 and ml were taken from figure 5(c). ‘The spanwise change
.
...=

in aagle of attack is shown in figure 13 for different values of the
dymmic-pressure ratio. .;‘

.-—..=
.. ------.r—

., ---——

The values of VI,””-rl, and V1 were”oEtain&d frcm figure 9(c)

and substituted into equations (26), (27); and (28~.
....S

The wing lift
coefficient, wing .ro~ing-moment coefficierit,and spanwise center-of-

.-—---...,~.~:
pressure ratios, as well as.the shift in aerodynamic center, were calcu-
lated by use of these approximate equations,in co~unction with equa-
tions (17) and (29) and a~ shown in figure 13 as functions of the
dynamic-pressure ratio —.

L—.,--, .- -r— .,. . .— .L—
- qD .—

.
DISCUSSION

Limitations of the Charts and Approxtia~e Formulas . .-
--,--—-

The charts and the approximate formulas,preseritedti this paper
are subject to certain limitations as a“result of the approximations
made in the calculations on which they are based. These limitations
take the form’of -restrictxl.onson the plai.form,“tin.-the.speed regime, and ““
on the wing structure. The results obtainable by the use of the charts
are likely to be unsatisfactory forwings of very low aspect ratio or
very large sweep and re~tively unsatisf%ctov” for wings of zero taper ..
ratio. -.

. .
–-

Wings of low aspect ratio are ruled out on.t~-ee $cmnts; (1) the
extent to which aerodynamic forces are overestimated in replacing the
wing by one with an effective root and tip is large,rfor wings of low -.
aspect ratio than for wings of high aspect.ra~io, (2) elementary beam
theory is unsatisfactory for calculating-the defo~ations of wings of
very low aspect ratio (bec&use the effects o: end csmstraint> shesm lag,
shear deformation,.and bending-torsion interaction_~e more important
when the aspect ratio is low), and (3) the assummions made concerning
the lift,distribution of the wing are bore nearly true fdr wings of high
than for-those of low aspect ratio. ~ ““ - :1

—..-

-. --

For wings with very large angles of.sweep, also, the use of an
.-=—

effective root and tip introduces relatively large errors fi the aero- ---L

dynamic forces. Fiwthermore, the root rotations neglected in the calcula-
=—u.
.-

tions (bending rotation due to torsion and twist due to bendi%) ~e . .

likely to be important for wings with large angles -of sweep.
<;

..—
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The aeroelastic analysis of wings with zero taper ratio entails
certain mathematical difficulties which do no-tsrise in the case of wings
with nonzero taper ratio. The stfffness of such wings is zero at the
tip and v~ low nes2 the tip, so that the boundaqy conditions for q
and r given by equations (AIOa) to (AIOc) in ap~ndix A are indeter-
minate. As a result of the Yelatively large values of the reciprocal of
the stiffness near the tip, the numerical-integrationmethods used b the
matrix calculations are less accurate. These clifficulties also occur in
other methods of solving the aeroelastic equations, such as energy methods.
Furthermore, the structural behavior near the wing tip is not represented
adequately by elementary beam theory. Finally, that the aeroelastic
resuits calculated for wings of zero taper ratio are not as reliable as
those for other wings is evidenced.alsoby the fact that they do not
lend themselves to systematization by means of approximatee formulas, as
do the aeroelastic results calculated for other wings.

As a result of these considerations one type of pl@n form of recent
interest, the delta wing, is seen to be unsuitable for aeroelastic
analysis by means of these charts because it has a low aspect ratio, a
large angle of sweep, and zero taper ratio.

In order t-ouse the charts two aerodynamic parameters must be known
for a~ given case, the effecti~ wing lift-curve slope and the section
aerodpsmic center. From an aerody&nic pofit of”view the charts of
this paper may be used in almost all cases for which these qu=t ities are

. known. The exceptions stem from the fact that the spanwise distribution
of the lift is assumed to be proportional to the chord, and the distance

* from the section aerodynamic center to the elastic axis (as a fraction
of the chord) is assumed to be constant along the span. These assumptions
are not valid for wings with large angles of sweep sad wings of low aspect
ratio, as implied previously. They are’also invalid to a greater or
lesser extent for most tings in the transonic region. Consequently, even
when the lift-curve slope and the section aerodynamic center sre known,
any results calculated for transonic speeds must be used with caution.

.

Another aerodynamic assumption 3mplied in the chs@ss is that no
concentrated aerodynamic forces, such as those dve to a tip tank or
nacelle, act on t~ wing. Relatively small nacelles in the inboard half of
the span can yr.obablybe ignored for the purpose of an aeroelastic analysis
at the preliminary design sts&e. However, large tip tadss cannot usually
be ignored even in a prel~nsry aeroelastic analysis; the aeroelastic
phenomena may in such cases be ~eatly underestimated by calculations
made with the charts of this paper.

>6

The assumption concerning the applicability of elementary beam
theory to the calculation of wing deformations due to aeroelastic action .*
serves to restrict the wings that can be analyzed by means of the charts
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to those “ofmoderate or-high aspect ratio, as stated previously.
--

Neglect
of chordwise bending (elastic.camber)effects in @.e calculation on
which the charts are based”serves to impose a lower ltiit on the thick-
ness of.the wings for which the charts may be used. Whether this limit
is within the region of practical thicknesses is qhestio~ble, however.
The divergence tests of reference 2, which were”performed on flat plates
of moderately high aspect ratio and with a thickness of 2.5 percent,
showed no obvious chordwise-bending effects, altho~ the relatively
small differenceflbetw&ri the measured @nd calculated divergence speeds
may have beeh due itipart to such effects.

As mentioned prendously, for wings with taper-ratios between C)
and 0.2 the results of aeroelastic calculations &e likely to be rela~
tively unreliable. For taper ratios greater thsm 0.2, the stiffness of
actual wings tends t.obe greater near the tip tha~.that given by the
constant-stre~s criterion;_conse~ntly, any given”aeroelastic effect”is
likely to be somewhat l-essthan that calculated on-’thebasis of a
constant-stress stiffness istribution, but much larger than that talc.u-’
lated on th-ebasis of a ct distribution.

If a given structure contains large cut-outs which give rise to
discontinuities in the stiffness distribute.ons~eq~tion (10) can be
used to calculate a fictitious tiootstiffr@ss to be used in conjunction

,
with charts for C4-type stiffness dl.stributions,~ovided the magnitudes
of the dlscontinuities are-known or etii.inabiq.: –

Use of the charts of this paper is premised on the assumption that
the elastic axis is at ~ approximately constant &action of the chord.
If the location o~the elastic axis vsrles somewhat along the span, the
use of an awrage valm.tends .togive satisfactory results for the aero-
elastic pheno&na of swept wings; for unswept wings, however, the results
obtained da the basis of th~s approximation have to be used with caution.
If the elastic axis exhibits abrupt shifts along me span as a result of’
large cut--=utsor for other reasons, the charts should not be used, except
possibly for mode~ately or highly swept wings. This restriction is
mitigated to a certain extent by the fact that an abrupt shift in the
locus of’shear centers does not necessarily imply an equally large or
equa12y abrupt shift in the elatiic axis.

Relation between Strength and Stiffness as ~sign Criteria

The strength of a structure is ita ability to withstand ayplied
loads without fail~ej the stiffness of a structure.is its ability to
deform relatively little under the ap~lied loads. The two terms are
related (a fact which.forms the”basi.sof the constant-stresstype of
stiffuess distributions use-din this paper) but are not synonymous.

..
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r
The problem of when to design for strength-and when to design for stiff-
ness and the related problem of how to design a wing for stiffness when

. required to do so..havebeen recognized for a long time. Because of the
complexity of these problems no generalIy satisfactory solution exists
at present, but the charts presented herein shed a certain mod of-’
light on the problem insofar as stiffness requir~nts occasioned by the
aeroelastic phenomena considered in this paper are concerned.

The charts of figure 2 indicate the extent to which a wing is likely
to be affected by aeroelastic phenomena; that is, how far it is from
divergence and how much its spanwise center of pressure Is likely to
shift as a result of aeroelastic action, provided the wing is designed
on the basis of strength considerations alone. If the margin against
divergence is too small, or if the spanwise center of pressure md the
associated shift in the aerodynamic center are deemed excessive, the
wing has to be stiffened beyond the amount associated with the required
strength. The charts of figure 2 therefore serve to delimit the regions
in which a wing can be designed on the basis of strength considerations
alone and those In which stiffness considerations predomhate, at least
to the extent of satis~ing the stiffness requirements associated with
the aeroelastic phenomena considered herein.

.-

The bending moment of inertia required by considerations of strength
alone for the root section of a wing is directly proportional to the
design load n(W - Ww), to the spanwise coordinate of the center of pres-.. sure, and to the wing thickness at the root and is inversely proportional
to the allowable bending stress ‘B“ Alternatively, this bending moment

. of inertia may be considered to be proportional to the design wing

loading
n(W - Ww)

to the square of the wing area, to the wing thiclmess
s’

(
ratio at the root, and to a function of the taper ratio which is 1+2L

\ (1 + ~]p
if strip theo~ is assumed to apply); this bending moment of inetii~ is “

inversely proportional to FB and independent of the aspect ratio. These
relations for the bending moment of inertia required by considerations of
strength alone must be kept in mind in the following discussion of the
bending moment of inertia required by considerations of stiffness. ,

In general, a wing with a high value of q* (see equations (7)
and (13)) is most likely to be affected by aeroelasticity (see fig. 2)
and, for a given value of q*, swept wings are much more likely to be
affected by aeroelasticity than unswept ones. (See fig. 2 and equa-
tions (9) and (14).) Consequently; the following wings are most likely
to be subject to aeroelastic phenomena, provided they sre designed on
the basis of strength considerations alone:.
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(1)

(2)

(3)

(4)

(5)

,. -- ,. .-- . . ..
NACA TN”2668” ‘--”“-~

Wings designed for a high flying speed or high dynamic pressure r-

Swept wings -.-
.

Thin wings

Wings designed for a low wing loading

Unswept and moderately swept wings with an elastic axis rela-
tively far back on the chord or”lil&y to-fly in a condition in which
the section aerodynamic centers are relatively far forward on the chord

(6) Wings operating at a Mach number at which the lift-curve slope
is relatively high.

For given wing loadings and given wing areas, some aeroelastic
phenomena of wings designed on the basis of strength considerations alom
appear to be i3UbSt~tialJy unaffected by changes in the ta~r ratio - for
instance, the spanwise shift of the center of pressure ad the dynamic .

pressure required for divergence. (In the case of .t.bedynamic pressure
requir,edfor divergence, the parameter q*D (fig. 4), the root stiffness,

and the root chord decrease“with increasing taper ratio, and the net effeet
of taper is small.) On the other hand, the change in the lift due to
aeroelastic action is more sensitive to the taper ratic)j it is more
significant for wings with high taper ratio tlyznfor wings with low taper
ratio. ..-a

The effeet of aspect ratio on aeroekstic phenomena tends to be
small for unswept wtngs ofia given wing area, because these phenomna

, “-

are determined largely by the magnitude of the parsmete.r q*, which iS

independent of’tie aspect ratio for a given wing area. For the aero-
elastic pheno~na of highly swept wings, however, the parsmeter q 3.S “:.-+
more significant. This parameter is proportional to the swept-span
aspect ratio for wings of a given area. Consequently, with a given wing
area, taper ratio, and design wing loading, the aeroelastic effeets of

—

Swept.wings tend to be more pronounced for whgs with high aspect ratio
than for those with low aspect ratio. Thti statement is particularly
true for the shift of the aerodynamic center, because a given spanwise
shift.of the center of pressure results in a much greater chordwise shift
fi the case ofla swept wing of high aspect ratio than in the case of a
swept wing with low aspect ratio.

Structural Weight Associated with the Required Stiffness

When a given wing has been shown .tobe subject--toundesirably lar@
aeroelastic effects (by means of the charts of this paper or by any --

other method), the problem arises how to distribute the additional required
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.

f3tiffnesB. If, for instsme, the pressure on an uqswept wing is within
10 percent of the dynamic pressure required for divergence and a margin
of 20 percent is desired, ~ increase of 10 Percent fi the torsio~l
stiffness along the entire span will produce the .destredresult. The
question remains, however, whether structural weight can be saved by
increasing the stiffness more than 10 percent in some places szndless in
others. ..

Some insight into this problem may be gained, at least insofar as
the aeroelastic phenomena considered herein are concerned, from aero-
elastic and weight calculations that have been made ~or a fsmily of
somewhat arbitrarily selected stiffness distributions which differ from

—

the distribution required by the constant-stress criterion. The rattos
of the local stiffnesses to those associated with constant stress are
shown at the top of figure 14. The structural-weight factor Fw is
shown for’two of these stiffness distributions as a function of the taper
ratio. The function Fw is proportional to the weight Ws of the

primary load-carrying structure and depends on the manner in which the
wing stiffness and thickness sre distributed along the span. (See
appendix B.)

The results of the aeroelastic calculations for wings with taper
ratio 0.5, constant wing thickness ratio h/c along the span, and these
two stiffness distributions are included in table 2 and figures 5(b),
7(b), 9(b), and n(b) . The designation,’’excessstrength” in these .
figures refers to the stiffmss distributions increased over the constant-
stress requirement, as shown in figure 14, with a value of m = 2.0. The
results of the aeroelastic calculations for the stiffness distributions
decreased below the constant-stress requirement to a value of m = 0.5
are the same as those for the constant-stress stiffness distributions for

(h/c)t
wings with varying ting thickness ratio; that isj --- = 0.5.

The results of the weight calculations and the aeroelastic calcula-
tions may be combined In several ways. The dynamic pressure at divergence,
for instance, C- be varied by c-- the be~- ad torsio@ stiff-
nesses uniformly along the span, by leaving the stiffnesses at the root
~c~ed and varying the stiffness distribution in a manner 13tiilm to
that indicated at t~ top of figure 14, or by a combination of the
processes. A specified dynamic pressure at divergence can therefore be
obtained as the result of several combinations of root stiffnesses and
stiffness distributions. Figure 15(a) consists in essence of a plot of
the stru&turaI weights associated with various co~inations of this
type against the tip stiffness ratio u for a spec~ied dynamic pres-
sure at divergente. This
associated with values of

figure indicates that the least weight is
the tip stiffness rtiio greater than 1.
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Similarly, figures 15(b) and 15(c) consist in essence of plots of the
structural weights associated with various combi.gations of root st~ff-
nesses and stiffness distributions required for shif%s of *1O perceti
in the spanwise cepter of pressure at a specified dynsnticpressure.
Figures 15(b) and 15(c) also indicate that the s@uctural weight is
least for values of the stiffbess ratio u greater than 1.

The significance of figure 15 is t~t, if a given wing designed on
the basis of strength alone needs to be stiffenedfor aeroela~ic reasons,
most of the stiffening material sho~d be added ti the outboard regions,
provided the weight of the material other than that of the primary load-
carrying structure is unaffected by the stiffening process. In fact, on
the basis of aeroelastic considerations alone, weight might be saved in
some cases by removing material from the root and adding material at the
tip; needlese to say, however, strength requirements wo@d be violated ~
by this procedure. Jhst whare the material sho~d beadded in the out-
board regio~” cannot be said on the basisof ttijalclations made for ,
figure u,” -sitice-thesecalculations ai-sume“~ ~~fications to the
constant-stress stiffness distributions .tobe m@e &s indicated at the
top of figure 14. However, it appears unlikely that great weight .sav~s
can be had by using modifications-which differ substantially from those
01””f@re 14. .- .-—.

The Aeroisoclinic Wing

The term “aeroisoclinic”refers to wings which deform under an
aerodynamic load in such a fashion that the anglefiof attack of all
sections relati~ to the free stream remai.nlunc@nged. Such a wing has
the ad~antage that its aerodynamic loads do not chhnge under aeroelasti.c
action either in magnitude or in distribution; its aerodynamic center,
for Instance, is unchanged, and the wing cannot diverge. The achievenmzt
of such “section aeroisoclinicism” is very difficult and can be realized
only by separate Vartation otthe bending -d torsion stiffnesses; even
so, the aeroisoclinic condition obtains for only one type of aerodynamic
loading condition at one Mach number. Howewr, aR over-all type of
aeroisocli.nicismin which bending and torsion action tend to cancel for
the wing as a whole is relatively easy to achieve. This over-all type has,
for practical purposes, tk same advantages as section aeroisoclinicimn,
in that the aeroelatiic phenomena considered in this paper tend to be
negligibly small for such a wing.

f-
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As may be seen from figure 2> at a small positive value of the
parameter k the values of the parameter q* for-divergence as well as
those for gimsn shifts in the spanwise center of pressure tend to Infinity.
This particular val@ of k represents aeroisocli.gicwings in the over-
all sense; from equations (18) aud (19) it may be seen to be the reciprocal
of the value of- ~ given in table 2. Hence, from the deffiition of k
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(equation (9)),

“~ “(GJ)r
tanA=Aelcr ‘~ %“

33_

(33)

t
with the impl cation that the distributions of the stiffness are of
either the c or the constant-stress type and that K2 pertains to ,.

either of these types and to the appropriate taper ratio. Equation (33) -
indicates that, for a given plan form with assigned values of st, Cr)
and A, the disposable parameters for the achievement of aeroisoclinicism
are the elastic-axis location e, which enters into the parameter el,

(~)r
and the root-stiffness-ratio

~
the aerodynamic center is not uuder

the control of the designer.

A decrease in the torsio~ stiffness can sometimes be effected
without decrease in the bending stiffness or hrpairmerctof the strength
characteristics of the wing, and over-all aeroisoclinicism may be achieved
in this manner for sweptback wings.. Or, if aeroisoclinic conditions are
considered at the outset, a wing c& be designed with the elastit-axis
location relatively far back (in the case of a sweptback wing) or forward
(in front of the aerodynamic center, in the case of a aweptforward wing)

.. in order to achieve aeroisoclinicism. Howeverj the fact that only certain
types of aeroelastic phenomena are considered in this paper must be kept
in mind. Locating the elastic axis far back or decreasing the torsional- stiffness, for instance, may lead to flutter difficul,ties, the solution
of which

The
geometry

may require excessive mass balancing of the wing as a whole.

Relation of Charts to Design Procedure

first step in the design of a wing structure, once the wing
and the over-all airplane characteristics have been decided

upon, usually consists of a rough apportioning of structural material
along the span in a manner intended to satisfy strength requtcements
approximately. At a later stage in the design procedure the structure
is checked for aeroelastic effeets and modified, if necessary. The
modifications are then checked again, and so on, until both stiffness
and strength requirements are met with what is believed to be a near-
optizn.lmstructure from weight considerations. The chsrts of this paper
may be used to facilitate the procedure at several stages.-

At the very outset, the preliminary-survey charts can be used to
. establish some over-all aeroelastic characteristics of the wing structure

that would be obtained by designing the wing for strengbh alone. If
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theae ‘characteristicsare satisfactory, the desi& of the wing structure
can proceed on the basis of stren&h requirements alons. The final
design can then be checked for the ~roelastic effects considered in this

....

paper by means of’the charts”contained he~in, and ~or other aeroelastic
effects, such as flutter and loss of latimralcontrol, by equally approxi-
mate methods. However, if the preliminary survey indicates that a wing
designed on the basis of strength alone would be unsatisfactory from
consideration of aeroelasticity, sufficieti additloti stfifness may be
incorporated h the prelimi~ design stage, provided the taper ratio
does not differ greatly f%om 0.5 and the wing thickness ratio is constant
along the span. For instance, the preliminsry-survey charts may indicate
a shift In the spanwise center of pressure which gives rise to a shif%
of 4 percent in the aerodynamic center, whereas the desired maximum shift
is 2 percent, so that the spanwise shift must be reduced to 50 Percent of
that indicated on the prelimi~-survey chart. The shifts in the span-
wise center of pressure for a wing w“ithincreased stiffness at the tip
[the “excess strength” case, for which u= 2.0) and for awing with

(
decreased stiffness at the tip the wing with m = O.~, for which the

(h/c)t
results of.tk case ‘of

m
= 0.5 msy be used

)
can then be obtained

frbm figure 9(b) and equation-(32], in conjunction with the value of the
_ic pressure at divergence estimated from equation or (19). l!he
fact that the wings with u = 2.0 and u = 0.5 have different dynamic
pressures at divergence than does the constant-stress wing must be kept
in mind.

From the shiftx of the spanwise ce&er of preesure calc@ated in
this manner the value of o for the desired spanwise shift can be
obtained by interpolation and, &nce, th~approxhate magnification
factors to be applied to the stiffness distributing for constant stress
can be obtained from the chart at the top of figure 14. Estimates for
the other aeroelastic characteristics considered in this paper can then
be obtained for the wing tith this modified stiffness distribution by
interpolatingbetween the results given for tmse characteristics for
WiIl& with @ = 0.5, 1.0, and 2.Oj that is, for t&_ cases referred to,
respectively, as

(~c~t . ()5
‘w” “

and .
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Wc)t = ~ o

Tv’m -“
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-“

(h/c)t

m = 1.0 (excess strength) .
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* in table 2 and figures 5(b), 7(b), 9(b), and n(b). Once the structure
of such a wing has been designed, the various aeroelastic effects con-
sidered herein should be checked by a more accurate method, such as that
of reference 1, and the loss of lateral control and the flutter character-
istics shouldbe calculated.

COIWLTJDII?GREMARKS

Ch@s have been presenked for the estimation of aeroelastic effectH
on the spanwise lift distribution, lift-curve slope, aerodynamic cemter$
and damping in roll of swept and unswept fdngs at ~sonlc and supersonic
speeds. Two types of stiffness distributions have been considered, one
which consists of a variation of the stiffness with the fourth power of
the chord and is appropriate for solid wings, and one which is based on
an idealized constant-stress structure and is believed to be more nearly
representative of actual structures.

..

.

.

.

The l.imi.tatlonsof these charts are that they do not apply to wings
with very low aspect ratio or very large angles of sweep, nor to wings
with large sources of concembrated aerodynamic forces. The charts sre
likely to be less reliable for-wings with zero taper ratio than for wings
with other taper ratios, md less reliable when the.component of the
Mach number per~ndicular to the leading edge is transonic than when this
component is either m.ibsonicor supersonic. Wings with large discon-
tinuities in the spanwise distribution of tk -bendingor torsional stiff-
nesses cannot be analyzed directly by use of the chsrts, but a means of
making approximate calculations for such wings has been presented. No
charts have been presented for inertia effects but a method of estimating
these effects has been outlined.

In addition to facilitating the calculation of various static aero-
elastic phenomena, the charts serve to simplify design procedure in many
instances, because they can be used at the preliminary design stage to
esthate the amount of additional material required to stiffen a wing
which is strong enough and because they indicate that the best way of
distributing this additional material is to locate most of it near the
wing tip.

Also, the charts facilitate the achievement of aeroisoclinic condi-
tions, inasmuch as they serve to define a stiple relation between the
elastic-axis location and the wing stiffness ratio which is required to
obtain this condition for a given plan form. Finally, the chsrts indicate
that a wing which is strong enough is most likely to be affected by aero-
elastic phenomena if it is to operate at high dynamic pressures, if it
is thin, if it has a large angle of sweep, M it is designed for a,low
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wing loading, if it has an elastic-axis.locati.ourelatively far back on f“

the chord, and if It “isto operate at transogic or high supersonic Mach
numbers. .

Langley Aeronautical-Laboratory
Rational Advisory Committee for Aeronautics

Langley Field, Vs., September 13, 1951
.—
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METHO= OF CAICUIATIONS ON WHICH CHARTS ARE BASED

The Aeroelastic Equations

The methods of calculating aeroelastic phenomena used in preparing
the chsrts of this paper are baaed on the following assum@ions:

(1) Aerodynamic induction is taken into account by applying an
over-all correction to strip theory and, when matrix integrations are
used, by rounding off the resuiting load”distribution at the tip.

(2) Aerodynamic and elastic forces are based upon the assumption of
small deflections.

(3) The”wing is clamped at the root perpe@iculsr to a straight
elastic axis (see fig. 1), ‘andW deformations are considered to be
given by the elementary theories of bending and torsion about the elastic
axis. ‘

In keeping with assumptions (1) and (2), the force per unit width on
a wing’section perpendicular to the elastic axis is

(Al)

where % and a
~

are, respectively, the angle of attack due to

structural deformations and the rigid-wing angle of attack, in planes

parallel to the plane of symmetry. (The geometrical ~le of attack is

considered to be cons%ant along the span in equation (Al); in the case
of linesr twist the coefficient C~ is used instead of C%.) The

torque of this force about we elastic es Is.
sections.

The integral
moment sre

#

.

equations for

T=

the accumulated

J

‘t
Zelc ds

s

Zelc for uncambered

torque and the bending

(A@
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M= Zdsds - (A3]
88 <“

and, insofar as assumption (3) holds, the angles of structural twist and ,“.”._
bending referred to axes parallel or perpendicular to the elastic sxis . -..::
are

The
and

.

T=
f

~Tds
~ GJ

(Ai) ““”
..-

r’ J‘l_d8= ~ EI

angle of attack due to structural
r by the equation

% =~cos A

Combining equations (Al) to (A6)
equations:

These

Zero twist

deformations is related to qI -,
— -

-r8in A (A6)

gives two si&ltaneous differential
.

f$$’5)=fi~%ag+C%(’CosA-
equations are subject to the following

and bending at the root,

q(o) = o

r’(o)= o

(AT)
#

1rsin A) (A8)

boundary conditions:.-
----

(@a)

(A9b)
Q

.—
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#
Zero torque, moment, and shear at the tip,

()~g,=oS=st

() dr
E%s=s ‘0t

()~~ dzr = ~

ds2 s=~
t

39

(Aloa)

(Am))

(AR)

In the following sections, equations (A7) and (A8) are solved
explicitly for an untapered wing with constant stiffness along its spsm
and by matrix integration for a wing with any arbitrary stiffness and
chord variation.

Solutions for Uniform Wings

Arbitrary geometric angle of attack.- If the torsional stiffneSS,
the bending stiffneSS, and the chord of the wing have constamt
values (GJ)r, (EI&, and Cr, respectively, slong the wing span,

.“
equations (A7) and (A8) become

3

[ “1@’cos A=-q*~ag+(q)cos A-r sin A) (All)

r’” sin A =
[

-7 ; ag 1+(qcos A-r sin A) (A12)

where the differentiation denoted by the primes is with respect to

E 1-:~ and the dimensionless parameters q* and ~ are defined by

(A13)

~ c~qcrstssin A
= (uk)

144(EI)r
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Differentiating equation (All) once with,resyect to ~ and combining
-.—

●

it with equation (A12) yields the single differen~ial equation
\
—

(N5)
,——

(The factor 1~ is used with ag for the sake o?.consistency,“despfte. ‘.2
-.

the fact that a geometrical angle of attack which is constant over the
span does not have a span~”se derivative.) Equation (Al>) is sub~ect to . _=

the followi~ boundary conditions:-- . - -. ~ l-:
.

-.-=

From equtitioris(A9a) and (A9b)

CL*(1) = o (A16) “

From equations (AIOa) and (&lOh]
.—

a6’(0) = O
-..

(A17)
.—

From equations (A1OC) and (AJ.1)

aJ(0)=-q*w+aJ03
—

“r‘“
where functional notation Is Uw=d} so-t.hat~.fw instance> as(l) means .“-.—.
the value of as “at- ~=l;

-— J+-G
,-

The solution of equatio-n(AM) cwbe effected very readily by meg.nsof “-:_..
of Laplace tiiansfoims. The complete solution of this equation is —

6

as(g) = -7+‘(1 f3(d - H(;)f~ 1
(A19) “-:.

where the integral:.H(g) is-defined as
.-.,.=

.—

.
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The functions f3Y f4} and f~ are defined by

41

f3(~) sC1e-2P~ + eP5(C2 cos

fk(E) s C4e-2pE
(

+ epE C5 cos

3-
C =3P $9
3 9f32+ 72”

C5 = “k

C8 = -CT

(A21a)
C3

)
7~ +7 sin 7~

C6

)7E+7sin7E (A21b)

yE +? sin7E) (A21c)

r3 +q*- y=o and

.

C9
=~

9j32 + 72
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The condlt~on for divergence is that cz~ be finite when mg Is
v

zero along the-emtire KPW: As can be seen from equations (A19)‘ad (A20), .,1
divergence can occur only when ——..-.,--.

f~(l) = o (A22) -

~ the value of q*Thus, for a particular value ofithe parameter k = ~
(or ~) at divergence is the one which satisfies equation (A22).

Constant geometric angle of attack.- For the additional-ty~ angle
of attack,

ag(E)
= constant: ~

and .-

(A23)
.——

— .-
—.

(A24) -

For lift distributionsbased on assmption (1) given at the beginning
of this appendix, the lift per unit width of span ‘~ then be written as

and

z f(E)-+-r—=f3110

The wing lifi coefficient, the wing-root
the wing-root twisting-moment~uef ficient

&c% = -@-

%-~==- --- ,

‘A
—

bending-moment coefficient,
are given in general by

.-

—4 -...

— —;
.—::

(fi5)
.-.—.

.— .-. --–—
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a=

cT=— @cr

‘tcr J
1

“W7Z-’1 ~ ()[c: 2u@) + c@! d~—

43 . . .
A.

(A27)

Then, for the uniform wing,

f4(l) ‘

‘qn

f5(l)
=2~

and

type

(A28)

(=9)

Limesrlyvs.rynggi eometric angle of attack.- For the linear-twist-
angle of attack,

%(E) = (1 - ‘)=%’
the factor R is 1, and

H(E)
[

= Gg(E) - f3(E) - f’4( k~ agt

so that

z—.

‘%

=f@)

~ ‘3(E) - ‘4(E)

ratios of the wing lti, wing-root twisting moment, and
root bending-moment coefficients to their rigid-wing values
on the basis of assumption (1),

(Am)

(A31)

wing-
are then,

.
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J%T=2 l%(E) +a=(E) ~E

CLWO o “@

[

fk(l)

1
=2~@) -f#)

CB

YJ

~ ma(~) + ag(~) d~ d~
—=”3cB

o 00 a%

{

f4(l) “
‘ 3 ~ f~(l) 1}.+p3(l)+q*f5(l) - 1

CT c~
—=—
CTO C%*

as in the preceding section.

(A33)

and

---

Equation (M)
a8

and equations (A2)

{T] =

Solution for Nonuniform Wings

may be written in the matrix notation of reference 1

1{2] = + C% LCl{~S + $
and (A3) as

(04)

.,..

9

—
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where the matrix CI1] performs ~ integration of the runnhg torque
Zelc from the tip iriboard,and the matrix @I~ perfo?ms a dotile
integration of the rumning load from the tip inboard. These matrices
are derived and given in reference 1. They are based upon Simpson’s
rule with a modification at the tip, where the load distribution is
asswed to go to zero with an

Equations-(A4) and (A5),

{@ =

{r} =

infinite slope at the tip.

written in matrix notation, are

(A37) -

(A38)

where the matrix EI~’ serves to integrate the accumulated torque or
bending moment outboard from the wing root. This integrating matrix is
based upon Simpson’s rule without the tip modification and is given in
reference 1.

The substitution of equations (A35), (A3@, (A37)S.and (A38) in the
matrix equivalent of equation (A6) yields

4.

{as}=q’[(j{{us} +:~g}} (A39)

where the aeroelastic matrix 1A] is defined by

p]= CI$sl EIIl~ - ‘L%l ~Ij L9 (A@)

The parameters q* and ~ are defined by equations (A13) and (Q4),
respectively, and

When ag is zero along the entire span, eqmtion (A39) becomes
-.

. {~s] = dfd{~s} (A41)
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Consequently> for”a p&ticular value of k, the value of q* at
divergence.can be feud by the iteration of the aeroelastic matrix

The
may
the

E~ti~n (A39) may be rearranged’as follows:

~.1 - VP]{... +%}= p.}

..L—

26@ ..-. -..

%.-
-—

(A42) ‘--”

set of linear simultaneous equations represented by equation (A42)
then be solved for the total”angle ofiattack ~as + ag in terms of

..+.=-:

values of ag along the SP=.. -=
.-..—

The integrations in equations (A2~),“(A26) and (A27) may be per- -
forniedwith the first rows of the [1’] and t]11‘ matrices. ThUS _ ... ....V.

and

C% kIJ,L+j{Kas + ~g}
-=

0!43) . –-.–.

—.

“* -.

..—
“r

—

(A45)

The aeroelastic characteristics of uniform wings were calculated by
both the direct method of the preceding section and_@e matrix uthod
given in this section. The values of thedivergence parameter q*D,

calculated by the direct method, “were fofid to be a%o”ut5 percent greater
than the corresponding values calculated by the matrix method. This
discrepancy can be shown to be almost entirely due to the rounding off
of the loading of the wfng tip in the matrix method. The differences

c~ c~
between corresponding values of ~, -- %!

>~ and ~ axe
&3 ck~

negligible. .. —

. —.--.

.—
.7-- =.-.. -

.,..-

v-=--
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e Combtition of Results

* The forms of the appro-fiate formulas ~sed in cti”ini~ the resuits
of the many computations indicated in the analysis were obtained by
considering a highly idealized semirigid wing; that is, a ting which is
rigid along its entire span but can bend and twist at the wing root
subject to the restraint of a bending and a torsion spring.

(GJ)r
If it is assumed that the two spring constants correspond to ~
(EI)r

and
T’

the value of q* at divergence is given by the simple

..

r

formula

where the factors depend on theK1 md %. .

(AM) -

taper ratio and the spanwise .

variation of the stfifness. As shown in reference 2, this formula serves
as a good approximation to the calculated values of q*D.

For the semirigid wing, the ratio of as to ag is found to be

Propofiioml to yq=. In order to adapt ttis expression to the -.

flexible wings
expression was

where f and
wing-chord and

1 -—
;

considered in the present analysis, the fo~owi.ng approximate
found to provide satdsfactory correlation:

.

—=:~(f+FAf)
as

agt 1 -—
%

(A47)

Af are fuuctions of the spanwise coordinate s* and the
stiffness variations; F is a function of the parameter k

and the wing-chord and stiffness variations. The functions f, Af,
and F also depend on the tfie o“fspanwise variation of the geometrical
angle of attack, the subscripts 1 and-2.being used to differentiate
between the two types of interest. The accuracy of equation (A47) is
illustrated in figures 16 and 17.

If equation.(A25) is used for the wing lift coefficient (with ~
replaced by s*) and equation (A47) for the angle-of-attack distribution,
the wing lt.$’tcoefficient may be “expressedas
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or

where the parameter

C%.l-%l-’)
c.

b

(A48) ---,-,%

-—

.- (A49) .

. (AX) ___

----

—

c.
%so that v and ~ are
%()

stiffness variations and depend on the type of geometrical angle-of-
attack distribution as well.

functions of k and of the wing-chord and
.—
..,4-
;‘;.

.-

1

As indicated by equation (A47), within the approximation inherent
in that equation, the shape of the spanwise distribution of as does
not vary with dynamic pressure.. ~erefore~ to a good approximation, the
lateral center of’pressure .ofthe lift due to ~“= (as well.as that due
to ug) does not -e its Position alo~ the el:stic ~is w~nthe _

dynamic pressure changes. !&e following approximate formula fa the
wing-root bending-moment coefficient may therefore be deduced from
equation (A4.8):

..—..

. .————
..—

.

A
qD

CB
. ~8*v — (A51) ‘ ‘:

1-
~ %0 + ‘g*cho

‘D ..

.

.
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where F** anti E*
g

are the dimensionleSE

tive wing root of the lif%s due to as and

Mr8
=** .

; LwB%

and

Then,

% l-%(l-H’)—=
CBO 1- -%

%

where v is defined by

49 -.

moment arms about the effec-

ag
and are defined by

(A52)

(A53)

UB

so that
~

is a function of the parameter k, of the taper ratio~

and of the stiffness distributions; it also depends on the type of
geometrical angle-of-attack distribution. .

An approximate.form-a for the,wing-root twisting-moment coefficient
may be deduced from equation (AM) as follows:

(A54)
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where El and F1 are the effective
s g

the elastic axis of the lifts due to as

,-------- .. . . . ., ...-
NACA TN”2608 .....

and a
,+

~ and are defined by’ -“

m

and

Then

where

.-.

..Z.*

.

1- 4(1 - VT)
CT “qD ..-—=
cTo

1-$ ““ “

-

(55) ----:=
—

. --

,, — —..-—— . .-.— ... .—. -=-=-

,

(A%) .::
i-- =.-

7.2

CT
—

SO that — iS a function ofi k, the taper ratio, ~d the st~fne~s
.._

%o
..-.-%-rT.-~ L...

distributions and also depends on the type of geometrical”angle-o&-attack ~“ :.:
distribution. .’ --—.,~,

The values of V, p,” and r =e &iR”ri-fir tlie*WO tyg~ of ‘.=
.—-

geometrical angle-of-attack distributions in figure= g and 11”.
,....—.

Figure 18 shows the~a~roximate formuks -(A49), (A52), and (A55) to
be in good agreemeat with more accurate~ computed values. ----..=-.—

The foregoing approximate formulas for the strticturalangle of-attack
and for the lilt, bendiig-moment, d twistin&iome=t coeffictents are not
applicable to wings tit.hzero taper ratio.. An attempt .waimade to combine
and systematize the resuits calculated for such wings in the manner
employed for wings with other taper ratios, but the.approximate formulae
obtained in this way were.found to yield unreliable results. Consequen@y
they are not presented in this pa~erj instead, the results calculated for
the wings with zero taper ratio are presepted directly in figures 6, 8,
10, and 12. -.

.“

,
a-.=

----
X

-. .’:

.- .—
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APPENDIX B

.

.

.
.

STIFFNESS DISTRIBUTION OF CONSTANl%STRESS

Outline of Constant-Stress Concept

WINGS

In order to calculate aeroelastic effects, the bending and torsional
stiffnesses of-the wing structure, EI and GJ, have to be known.
These stiffnesses enter the calculations in two w~s. The root stiff-
nesses, as indices of the over-all-bending and torsion@ stiffuesses,
constitute primary parameters which sre required for use of the charts
of this paper, but were not required in tk preparation of the charts.
On the other hand, the stiffness distributions, that is, the ratios of
the local stiffnesses along the span to the root “stiffnesses,are
secondary parameters which are not required for use of the charts but
did have to be assumed in order to prepsre them.

In calculations prelhuhary to the actual design of the structure,
the bending and torsional stiffnesses “ofthe structure are not lmown;
they must be estimated on the basis of either past exp&rience or considers-
tions of an idealized structure. For the purpose of esthating stiffness
distributions, past experience tith similsr structures is likely to be a
useful guide in any specific,case but does not lend itself to generaliza-
tion and hence to the preparation of generally applicable charts. The
stiffness distributions (other than those which vary as the fourth power
of the chord) used to prepare the.chatis of this paper have been obtained
from consideratioti of an idealized structure, as outlfied in this appendix.

Basically, the method of this appendix consists in an effort to relate
the stiffness of a wing to its stren@h and to estimate that strength on
the basis of certain assumptions. The fundamentalassumptions are that
the bending and torsional stresses are constant along the span snd that
the applied loading is proportional to the local chord. The other assump-
tions concern the bending amd torsional stresses caused by this load and
their relation to their allowable values. In estimating these stresses
the structure is assumed to be of the thin-skin, stringer-reinforced shell”
type. Certain effectiveness factors are used; for instance, the ratio of
the allowable torsional stress to the alJ.oWablebending stress, or the
ratio of the cross-sectional area of the effective torsion cell to the
product of the chord and the wing thickness. The root st~fnesses
estimated by”the method of this appendix depend directly on the values of
these ratios. The stiffness distributions, on the other hand, sre largely
independent of these ratio8 but imply the assumption that the ratios are
approximately constant_alongthe span. Consequently, the constant-stress
conce~ used.in this appendix is .more.ltielyto furnish useful results

,
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for stiffness distributions than for the root stiffnesses, and,
of the type of structure assumed, the concept is not applicable
thin wings.

Assuned Applied Loads

TN 26o8 ...

because +

to very
.’

-.

If the applied-normal load is
to the chord, that is, if

1.

the bending moment at any point on
the.chord distribution as follows:

(-L)M = K l“s2A 2

where s* is the
measured from the
one wing is given

distributed“inq.manner proportional

=Kc (Bl)

the

J

1

S*

span can be .@btained.by integrating ‘-.—

J
1

C ds* ds*
S* ——

dimensionless distance along the reference axis
effective root. Simd.larlyj‘the total normal load on

.-

by

~ = K b’/2

r
C ds*

cos A

--

.
T

Iflthe wing is linearly tapered, so that ,*.

c = cr[l - (1 - “A)s~ ““ (B’)

where the taper ratio h is defhed by .._. -

Ct
L =—

Cr

then the ratio of the bending moment at any point of the span to the
product of the total normal load and the wing semispan less one-half of

.—

the fuselage width can be expressed as”follows: “-”
.-...__
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where the function f6 of s* and

f6 (11+2A‘7m -

and shown in Yigure 19.

A is defined by

1

)A ‘* (1 - ‘*)2

53

(B4)

Similarly, if the moment arm of the normal load applied to the wing
at any station is also proportional to the chord, the constant of propor-
tionality being el, the distributed torque at any station is then elcZ,

and the accumulated torque is

which may, in turn> be

.
where the function f7

.

[

=~l+h+ka
f7–3 (1+X)2.

and the average chord

expressed as

of S* and L is deftiedby

(B5)

(B6)

E is defined by

(B8)
Cr + Ct——c =

2“

The function f7 is also shown in figure 20.

The total normal load on-one wing, P, can be estimated from the
design gross weight and the design load factor of the airplane in the
following manner:.

.

‘

( w)p=:%- (B9)
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If.the fraction
(including that

of the wing lift to the total lift c=”ied
of the fuselage and tail) is designated by

flACATN 2608 .1

~a.—
by the airplane .

~1> so tkt

..-—

and the fraction of the wing weight–(including the amount of fuel,
external stores, and so on used in the critical design condition)-to the
total design gross.weight is designated by Tj2,

.-.-.>

Ww
72 =Y. .-:.-:

—

then equation (B9) may be written as
.-——.:-.-+

(Blo) . -p=~q3nW

where .

With the value of P given by equation (B1O), equations (B3) and (B6)
----

serve to express the 10cKL bending and torsional moments in terms of
---
._.:

known design parameters.

Effective Skin

Resist

Thickness Required to .—

Applied Loads ‘---”“-- ‘“ -.—

The wing structure has to resist both the applied bending moments -:
and the applied torques; in other words, the load-carrying metiers must
resist conibinedaxial and shear stresses. A relation commonly used in
the design of wing structures loaded by compressiveand “shearstresses . ...+

due to bending and torsion moments is —

()

fb ‘t 2 i.

—+fi=
1 ,-

‘B
..-
*

.-
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x

where ~ is “theapplied bending stress, ft the applied shear stress,
FB the allowable (compre8sive) bending streEs, and FT the allowable

.
shear stress. However, a somewhat conservative relation,

fb ft
-1

—+~-
(Bll)

‘B

is much more convenient for the present p~ose and, consequently, is
used as the basis of the following development. If the msrgin of safety
is not zero, equation (Bll) can be rewritten as

fb ft
— +- .
FB- FT n4 ... (B12)

where T4 is an effectiveness factor which can be expressed in terms of

the margin of safety (M.s.) as

.

.
.

The applied bending stress is

(B13)

(B14)

where z is the maximum ordinate on the compression sid; measured from
and normal to the chordwise principal axis. Similarlyj the applied shesr
stress is J

.,
ft+ (B15)

where ~ is the cross-sectional”srea of the (assumed) single torsion cell,
and t is the skin thickness on the compression side. Ehibstitutionof
equations (B14) and (B15) into equation (B12) yields

(B16)

.
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In -orderto relate-the bending and torsion stiffness of the wing to
% ““

skin thickness t or to an equivalent thickness t= which includes -–-
material in the stringers and spar fl.a@es,,”%h& bending stress is. -* ....-

assumed to be carried bv a box covered tith 8heet”“of%m effective thick- ..__-.—
Iless te, the webs are”assumed to c&ry no b“endi~ stre”ss,and the

—

torsion stress is assumed to be resisted by an eq@valeqt single cell,
the two “websotihich contain all_the mqterial of .~heactual webs. The
torsion and bending moments of inertia may then be written as

and

(B17) -

.

[()””
—.

..()].2G$j( ,+-q@132q1f$ 2I = qlocte 75 2

—.

‘ (BiO)

where the effectimness factors q5 to T115 are-@~d in table 1.

In the factor q9, the effective perimeter ~. of “tietorsion ce~ is

the sum of the lengths
ratio of the thickness
of the giv6n length b-f

When the “valueof
equation (B16), equation (B16) may be written as

of skin wound the peri.geter,each weIghted by the
of the critically stressed element to the thickaesE
skin.

I given by equation (B18) is substituted into

By making use
neas factors
written as

(B19)

of.equations (B3), (B5),
q~6 to. q19 def~d in

and (B1O), as well‘as the -effective-
table lfl.equgtion (B19) can be...
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(B20)

ts defined in terms of the factorsThe factor f8 f6 and
‘7 ‘iven

by equations (B4) snd (B7) as

(B21)

The functiOq fa is 8hown in f@e 21.

Bending and Torsional Stiffriesses

Substitution of the value of te given by equation (B20) into
equation (B18) yields an expreasion for tk- bending moment of inertia I
or for the bending stiffness EI at any point along the span. The value
of this stiffness at any pdnt on the span may be divided by the stiff-
ness (EI)r at the wing root. This ratio can then be ,expressedas

where

The function

obtained from

=3-
‘9 ‘ ~ f7r

f + Tlgel

8 AA

f8r + ‘-hgel
h

‘9
is plotted ~ figure .22. The value. (EI)r may be

.equatio.ns(B18) and (B20) as

(B22)

(B23)
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where

“ ‘-”+W’”+%+ (B25)

The.functtori Fr” is shown in fi~e 3 & a ;functi~n“of h, with ~lgel
~

as the parameter.

.-
__.—

h

.

..:=

i--
.-

.- ,-.

.- ..
Similarly the torsional stiffness GJ may be-”obtainedby substituting

the value of -t given by equation (B20) into-eqktion (B17); However, - ‘-:
from equations ~B17)and (B18)th~ratiaoft hetorsio~3s t$$fnessto” “.””-.,.=
the betidihgstiffness may”be obt-a~ned”in”the form “”

.

8. (B26)

This equation shows that the ratio GJ/EI is const~gt along the”spire
within the framework of the constant-stress concept: Equation (B26) may,
therefore, be-interpreted as-an e~rea~ionf orth~lvalue”- GJ/EI at the
wing root, that is,“forthe value (GJ)r/(EI)r. The torsional stiffness
at any other”point on the span can.then be obtained from eq~~t~n (322),
since ., ..- .-.

because GJ/EI. is constant over the span.

(B27)

The stiffness ratios W/(GJ)r and EI/(EI)r can be obtained
directly from figure 22 when the thickness ratio h/c Of the W- iS
constant along the span; if the thickness ratio is not constant the
fac%or f9 obtained from figu&e”22 must .bem~tipl’ied by the ratio -

+-

hc -
h C)r

at any

As may be seen

the parameter

. . -=-

—.
.e. —

.-—-—

-. .;:

—
.. . .

t -d-e
.. .. .

.....
station to obtain the’stiffnesti”ratio at that station.

..... . ----_—.

from figure 22, the function
‘9 d;es”not va~ much with - ‘-~=

Kgel
.-

-j this parameter represents the additional smount of
‘A



NACA TN 2608 ,. 59

●

skin thickness required to cexzcythe torque (see equattons (B19)
and (B20)), and this additional thickness is small for most conventional

‘~9~1 -0.03 was.
#

wing structures. Consequently, an average value of

used to obtain the stiffness distributions used in the aeroelastic
calculations,on which th~ charts of this paper we based.

Equation (B22) shows that, once a value has been assumed for”the

~e~ ~lg%
AA J the stiffness ratios EI/(EI)r and GJ/(GJ)r are inde- “

pendent of the .effeetiveness factors used in this analysis. Therefore,
specific values of these parameters need “notbe known in.order to estimate

. the stiffness distributions, but one of the’assumptions on which equa-
tion (B22) is based is that whatever values the effactiveness factors
have are nesrly const=t along the span. In order to estimete the value .
Of (EI)r, however, these factors must be known, since they enter
directly into equqtion (B24). The estimate of -(EI)r obtained in this
manner is, therefore, stiject to all the limitations huposed by the
approximateions of the constant-stress concept. Hence, some judgement
must be exercised “k using this estimate, and, if possible, it should be
modified in the light of experience.

.
.

.

Structural Wei@ Associated Wth the Stfifness Distribution”

The increase in structural weight associated with a given increase
in stiffness can be estimated on the basis of assumptions similar to
those made in relating the stiffness dnd the strength. For the .yurpose
of this analysis the various components of the wing struct~e, exclusive
of the carry-through structure tithin the fuselage, are classified in
two groups, one which contains’the elements that take the bending and
torsional loads due to the assinnedloading and one which contains all
other components. In tti”first group We:

(1) The =ount of top and bottom skin that is used in the estimation
of the thick sses requir=d to tithstand the be~ding
including stringers and spar flanges included in the

(2) Webs, including any web stiffeners

In the second group are: .

and torsional loads,
“equivalentskin

(1) Skin, stiffeners, false spars, and so on, which are not con-
sidered in the estimation of the equivalent thicknesses,-

(2) Ribs, bulkheads, and posts designed to raise the buckling
strength of the cover sheets
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(3) COfirOl surfaces and their support3, attachments, and
mechanisms

(4) The SUPPOfiS of fiterul stores ““

This analysis is concerned.only with the first group and,
specifically, with the relative increase.in the weight of this
occasioned by an increase in stiffhe;s of the main structure.
estimating the actual magtitude of.-theweights involved and of
the weights of the items
ences 7 and 8.

The weight per.unit
group can be written as

in the second group-as well are given

.- .L,-i

● “actuating

.—.

more
.-:.C

group
.-

Means of —

estimating ‘-” ::
in refer-

— . ...-,.

length of the structural elements of the first

‘s = a&-1217#te (B28)

.:

where 7s is the”density”of’the material of tie primary structure (or
an equivalent density in the case of s&dwich construction), q21 is

—

the ratio ofian equivalent perimet~r .2
..

to the actyl perim@er of the..__ -------
cell, and ~ “isthe fi of-”all:thele&h6”which” constitute the perimeter, ___
each.multiplied by the ratio of its equivalent thickness to the equivalent
thickness te of-the upper cover sheet. .—. .-.—

In view of the assumptio-nmade conc&ni&”the combination of bending
and torsional stresses, the thickness te requir@d in equation (B28) can &
be obtained from equation (B18) as

te-= 41 .

715ch2 .

so that

or ‘

—.
--.—.

—

‘b’kl . .
‘s

.f378——
~~~ h2

,.

‘s I/~
—=-
Ws
r (h/~)2 .

. . ..

.
..—

. .
-.

●
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* Consequently, the total we~ht (for both wings) .ofthe
of the first group can be est~ted from the relation

.-

61

structural elements

(B30)

Equation (B30) serves to estimate relativ& changes in the weight of
the first group of structural elements. For instance, with a given
distribution of I and h, that weight is directly-proportional to ~
and inversely proportional to %2. Similarly, given two different

distributions of Ir and hr with the same values at the root, t;ne
ratio of the weights is equal to the ratio of the two Y&Lues obtained by
using the r.espectiyedistributions of I qnd h in the integral of
equation (B30).

Although the actual value of Ws is not relevant to this discussion,
it may be estimated by substituting the previously calculated stiffness
distributions into equation (B30), and the result is given here as a
matter of generaI interest:

.

.

where

Fw = 32 J1k ds+

(1 + X)2 ‘r (h/hr)2

(B31)

(B32)

According to equation (B31), the structural weight is directly
proportional to the design gross weight,-load factor, swept-span aspect
ratio, span, and density of the material of the”prhary structure and
inversely propotiion.alto the allowable stress and the wing t~ickness
ratio. The dependence of the weight on the taper ratio (all other param-
eters, notably the aspect ratio and span, sre.the same) is illustrated in
figure 14 by a plot of the function Fw against taper ratio for several

~lgelvalues of the parameter .—.
!A

and of the ratio of the ~ thickness

ratios at the tip and at the root.
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V.S OF TBE CWJF’ICIENTS K1 m ~

I&T and EI

vary 86 .4
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streas criterion

lhcreasedbeyondvalues
requiredby conatant-
stram criterion

,,

(h/c)t

~

1.0
1.0
1.0
1.0

1.0
Lo
1.0
1.0

.5

1.0

K1 K2
I

By matrix
By Snaqtic

By matrix
By. analytic

integration Integrat Ion

‘nte=ation (reference 2) ‘te~tion (reference 2)

.795 ---- .252 -----

1.297 ---- .357 ---.-

1.830 ---- .M!a -----
1.440 .626 -----
.928 :::: .310 -----

1.700 ---- .39 ---.-
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●

TAmE 3.- PMAMDTERS OF WHW USED IN IILWTRAT.IVEEKAMPIE
r

.
,

1

●

I Geometrkal parameters
I I Structuralparameters

A . . . . . . . . . . . . . . . . . . 4
A, deg . . . . . . . . . . .. . . . . 37.5
S,sqin... . . . . . . . . . . . 37,498
bi n.. . . . . . . . . . . . ...387.4
w/2>ti. . . . . . . . . . . . ...20.0
b’/2,in. . . . . . . . . . . ... . .173.7
cr-in..~..... . . . . . . .. U32.8
%i n.,...... . . . . . . . . 34.2
L . . . . . . . . . . . . . . . . . .0.527
=MAc)fi”””...”. ““. . . ..1OO”4

1
e . . . . . . . . . . . . . . . . .
(&T)r, lb/aq in: . . . . . . . 6.94!.%
(E1)=,lb/sqti. . . . . . . . 9.56x @
&r/(m)r . . . . . . . . . . . = (c/cr)k
EI/(EI)r. . . . . . . . . . . = (c/cr)k
lw~,in . . . . . . . . . . . . . 0
d, h.. . . . . . . . . . . . . -5.6
, In. . . . . . . . . . . . . . . -3.0

I Aerodynamicparameters”

subsonic supersonic
(M< 0.65) (M= 1.5)

a. . . . . . . . . . . . . 0.25 0.425
‘=1...”...”.”.”.. 0.194 0.019

c% ..”.”....”.. 2.73 4.92
R . . . . . . . . . . . . . 0.78 “l.&l

AeroelastIc praueters

Subeonic Slipsmollic
(M<0:65) : (M= 1.5)

k . . . . . . . . . . . . . 7.76 79.0
Al . . . . . . . . . . . . . 2.82 2.82
Up . . . . . . . . . . . . . 0’.474 0.474
q*D . . . . . . . . . . . . -1.053 -0.0774
~,lbjaq ft . . . . . . . . -6tio -qoa
fl u, . . . . . . . . . . . Fig.5(c) 1 Fig.5(c)
Ml . . . . . . ..-.-. . . F=. 5(c) . %. 5(C)
Fl u . . ... . . . . . . . . -0.27 -0.02
% . ...”...?””.. 0.655 0.662
WI. . . . . . . . . . . . . 1.303 1.333
CL 1 - o.3k5-& 1 - 0.33

%—. . . . . . . . . ..
%?o l-g 1 --$

1- 0.1-qD 1- o.llULqD

$“..”.......”” 1 - o.3k*” 1- o.3~
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Figure 1.- Definitions of geometric parameters.
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constantigeometricangles of attack at various
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Figure 17.- Comparisonof angle-f-attack ratios calculatedby the rcalrix
method of.’appendixA with those calculated from equation (20) for

constant geowtric angles of attack and for various values of the
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